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The effect of vertical vibration on the onset of thermocapillary
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S.M. Zen’kovskaya, V.A. Novosyadlyi, A.L. Shleikel’
Rostov-on-Don, Russia

Received 12 January 2006

Abstract

The effect of vertical vibration on the onset of Marangoni convection in a horizontal layer of a viscous incompressible uniform
liquid with a free surface and a hard (solid) or soft (impermeable and stress-free) wall is investigated. In the case of harmonic
vibration, a dispersion relation is constructed in explicit form using continued fractions. From this, equations are obtained for
determining the critical values of the parameters for all three main types of loss of stability. Neutral curves of the monotonic and
oscillatory instability are constructed, for fixed frequency and amplitude of the vibration, in the form of a graph of the Marangoni
number against the wave number. The regions of parametric resonances, corresponding to synchronous and subharmonic modes are
determined. The frequency values for which a high-frequency asymptotic form is reached are obtained. The long-wave Marangoni
oscillatory instability is investigated, and it is shown that in this case the Marangoni numbers are negative and depend only on the
Prandtl and Biot numbers.
© 2007 Elsevier Ltd. All rights reserved.

The problem of the effect of vertical vibration on the onset of convection in a region with a solid boundary was
investigated in Ref. 1 in the case of high-frequency vibration and finite amplitude of the velocity. The averaging
method was employed, which enables the unknowns to be separated into slow and fast components, enables the fast
component to be expressed in terms of the slow component, and enables average equations to be obtained for the latter.
Later, a number of papers were published which analysed the average equations of convection, and the investigation of
vibration convection became a separate area of the theory of convective instability. Here both gravitational convection
and convection in zero gravity were considered. A review of publications on vibration convection can be found
in Ref. 2. The first experiments to investigate the phenomena of parametric resonance and dynamic instability in
gravitational thermal convection were described in Ref. 3, and a review of the theoretical and experimental results on
convection in modulated fields is also given there. The effect of high-frequency vibration on the onset of thermocapillary
convection is considered in Refs. 4–8. There are not many theoretical papers on convection in which parametric actions
of finite frequency are considered, due to mathematical difficulties. In the case of a small modulation in systems
close to parametric resonance, perturbation methods are employed.9–11 For finite amplitudes of the modulation, either
grid methods or the Galerkin–Kantorovich methods are used.12–15 The effect of thermal modulation on the onset of
Marangoni–Bénard convection in a horizontal layer was also investigated in Ref. 16, where a considerable list of papers
on parametric actions on thermocapillary convection are listed.
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In the case of harmonic vibration, when the equilibrium solution allows of a constant vertical temperature gradient,
in research on gravitational convection by Yudovich and his students (Refs. 17–19),a the method of continued fractions
was used to calculate the critical values of the parameters.20 This method was also employed when considering the
stability of steady flows under conditions of spatial periodicity.21,22advantage of the method is that it does not require
constraints on the parameters and can easily be realized. In problems with free boundaries or interfaces, an approach
was developed in Ref. 23, which also enabled a dispersion equation to be constructed in the form of continued fractions.
This method is also employed in the present paper, the purpose of which is not only to obtain qualitative results, but
also to demonstrate effective methods of solving similar problems.b

Particular attention is devoted here to cases of high and finite frequencies. It is well known that, at low modulation
frequencies, no numerical methods, as a rule, work well; in such situations, asymptotic methods (most often of all the
WKB method24) are used, which were employed for the first time in convection problems by Markman and Yudovich
in Ref. 17.

1. Formulation of the problem

Consider the motion in a layer of a viscous incompressible uniform heat-conducting liquid, bounded above by a
free surface x3 = �(x1, x2, t), and below by a hard (solid) or “soft” wall x3 = H. We mean by a “soft” wall an inpermeable
stress–free surface. We will take into account the deformability of the free boundary and the presence of surface-tension
forces with a coefficient �̃ = �0 − �T (T − T0), which depend linearly on the temperature. We will assume that the
wall executes vertical vibration, given by the relation x3 = ãf (�̃t), where f is a 2�-periodic function with zero mean,
�̃ is the frequency and ã = ã(�̃) is the vibration amplitude.

In a Cartesian system of coordinates, rigidly connected with the vibrating wall, the convection equations have the
form

(1.1)

Here v = (v1, v2, v3) is the relative velocity of the liquid, p is the pressure, T is the temperature, measured from a
certain value T0, �0 is the liquid density, � and � are the kinematic viscosity coefficient and thermal conductivity, and �
is the unit vector of the downward directed x3 axis (the quantities x1 and x3 will sometimes be denoted by x and z). The
origin of coordinates is chosen on the unperturbed free surface. The function g(t) = g0 − ã�̃2f ′′(�̃t) is the variable
acceleration due to gravity. If the free boundary is situated below (an inverted layer), we must replace � by −�. We
will assume that above the liquid there is a gas whose density is negligibly small, while the temperature and pressure
are constant. The following boundary conditions must be satisfied on the free boundary x3 = �(x1, x2, t)

(1.2)

a See also: Yudovich V I, Belen’kaya L Kh. Numerical investigation of the onset of convection in a binary mixture under the action of time-periodic
external forces. Rostov-on-Don, 1981. Deposited at VINITI 4 January 1981, No.1570-81.

b For a preliminary account see Zen’kovskaya S M, Shleikel’ A L, Novosyadlyi V A. The effect of vertical vibration of finite frequency on the
onset of thermocapillary convection in a horizontal layer. Rostov-on-Don, 2003. Deposited at VINITI 27 July 2003. No. 1440-2003.
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Here l is the normal to the free boundary, n = l/|l| is its unit vector, 	ik are the components of the viscous stress
tensor, and 
 is the mean curvature, which is calculated from the formula

We will henceforth consider liquid flows that are periodic in x1 and x2 with periods L1 and L2. We will correspondingly
assume that the velocity v, the pressure p, the temperature T and the function � in the equation of the free boundary
are periodic in x1 and x2. Moreover, we will assume that the mean thickness of the layer is specified and equal to H,
so that

This condition, in particular, means that, when investigating the stability, perturbations due to a change in the average
amount of liquid in the layer, are eliminated.

We will specify the following boundary conditions on the hard wall

(1.3)

If the wall is soft, the boundary conditions on it have the form

(1.4)

2. The quasi-equilibrium solution

2.1. The stability problem

We will assume that the heat-transfer conditions are chosen in such a way that problems (1.1)–(1.3) and (1.1), (1.2),
(1.4) have a solution corresponding to relative equilibrium with a linear temperature profile

Here A is the equilibrium temperature gradient.
We will investigate the stability of this solution, assuming that

We will change to dimensionless variables, choosing the following scales: length �, time �, velocity �/�, pressure
�0�2/�2 and temperature A�. The scales � and � remain arbitrary for the present. Retaining as dimensionless
variables the same notation as for the dimensional variables, we will write the system for infinitesimal perturbations
in the form

(2.1)

Linearisation of boundary conditions (1.2) gives the conditions on the unperturbed free boundary

(2.2)
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We will write the boundary conditions on the soft (hard) wall in the form

(2.3)

Problem (2.1)–(2.3) contains the following dimensionless parameters

Here � is the dimensionless viscosity, Pr is the Prandtl number, Ma is the Marangoni number, C is the dimensionless
surface tension coefficient, Bi is the Biot number, B is the heat-transfer parameter (this will sometimes be written in the
form B = B0/B1), � is the dimensionless modulation frequency, h is the mean thickness of the layer, Q(t) is the variable
dimensionless acceleration, where Q0 is its average part (g0 is the acceleration due to gravity), and −a�2f′′(�t) is its
modulation with amplitude a�2 (a is the dimensionless modulation amplitude).

Further, for brevity, we will assume that the perturbations are plane: u2 = 0, and the unknowns u1, u3, P, �,  are
independent of the variable x2. If we consider three-dimensional modes, we obtain the same equations, except that
instead of the wave number we will have the modulus of the wave vector. We will introduce the stream function �(x,
z, t), assuming u1 = ∂�/∂z, u3 = −∂�/∂x, and we will eliminate the pressure. Separating the variable x by making the
replacement

for the amplitudes �̂, ̂, �̂ we obtain the problem (D = ∂/∂z, Ft = ∂F/∂t)

(2.4)

(2.5)

(2.6)

The cases of soft and hard walls differ by the second condition (2.6): on the soft wall D2�̂ = 0 and on the hard wall
D�̂ = 0.

3. Floquet solutions

3.1. The dispersion equation

We will assume that f(�t) has a Fourier expansion: f (�t) = ∑
fje

ij�t (summation over j here and henceforth is
from −∞ to +∞). We will seek a solution of (2.4)–(2.6) in the form

(3.1)
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where � is the Floquet exponent – an unknown complex number, which defines the behaviour of the perturbations with
time. For the unknowns �n(z), cn, �n(z) we obtain an infinite system of ordinary differential equations

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

Here �n = � + in�, � = ��2, �2 = C�3 + Q0�, q = a�2�/2, L = D2 − �2.
Now, for each value of n we express the unknown functions �n(z) and �n(z) in terms of cn, by solving problem (3.2),

(3.3), (3.5), (3.6), and then substitute them into boundary condition (3.4). As a result, we obtain an infinite system of
linear algebraic equations for the coefficient cn, which we will write in the form

(3.7)

Equating the determinant of this system to zero, we obtain a transcendental equation, which can be used both to find
the Floquet spectrum of � for fixed values of the remaining parameters and to determine the critical values of the
parameters and to construct neutral curves.

Further, we will consider the case when f(�t) = cos�t, so that in the Fourier expansion f−1 = f1 = 1/2, while the
remaining coefficients are equal to zero. Then, system (3.7) becomes a three-diagonal system

(3.8)

The expressions for Mn will be different for soft and hard walls.

3.2. A soft wall

When �n �= 0 and Pr� �= 1, we obtain

(3.9)

Here we have used the following notation

(3.10)
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When �n = 0, the formula for Mn takes the form

(3.11)

In particular, when � = 0 we can use formula (3.11) to calculate M0.

3.3. A hard wall

If � + in� �= 0, formulae (3.9) and (3.10) remain the same, except that ln must be replaced by l̄n, and mn must be
replaced by m̄n, where

(3.12)

When �n = 0 we have

(3.13)

Note that, in passing, we have obtained expressions for the critical values of the Marangoni number and a transcen-
dental equation for the frequency of neutral oscillations when there are no vibrations (a = 0 and, as a consequence,
q = 0). System (3.8) then consists of a single equation M0(�)c0 = 0. In the case of monotonic instability (� = 0), the
expression for M0 is given by formulae (3.11) or (3.13), and from the equation M0 = 0 we obtain a formula for the
Marangoni number Ma, which is identical with the well-known formulae in Ref. 25. In the case of oscillatory instability
�0 = ic, from the equation M0 = 0, where M0 has already been found from formula (3.9), we can write the Marangoni
number in the form Ma = Ma(c), and from the condition for this parameter to be real we obtain a transcendental equation
for the neutral oscillation frequency c (see the preprint indicated in the second footnote).

3.4. The method of continued fractions

For tridiagonal systems we can write the dispersion relation in explicit form using continued fractions. This is
described in detail in a number of papers (see, for example, Refs. 20–23). We will briefly present it here.
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We rewrite system (3.8) in the following form

(3.14)

and assuming �n = cn/cn−1, we reduce it to the form (the validity of this change has been substantiated in Ref. 17)

(3.15)

Now, from Eq. (3.15), using continued fractions, we obtain two representations for �n

(3.16)

equating which for n = 1 and substituting the expressions for an, we obtain a dispersion equation for the Floquet
exponent �

(3.17)

Later we will be concerned with neutral curves, for which Re� = 0 and Im� = ic. In this case, the unknowns are the
critical Marangoni number Ma and the neutral oscillation frequency c.

When � = 0 we have the symmetry relation Mn(0) = M−n(0), as a result of which Eq. (3.17) is simplified and can
be reduced to the real form

(3.18)

If � = i�/2, we have the equality M−n(i�/2) = Mn−1(i�/2), and the characteristic equation, corresponding to the
onset of a neutral oscillation of double period, takes the form

(3.19)

Hence, we have, in explicit form, characteristic equations for determining the critical values of the parameters for
three fundamental transitions to secondary modes: of the same period as the fundamental mode, of double period, and
also to two-frequency quasi-periodic modes, where in the first two cases these equations are real.

4. Numerical results

We will choose the scales � and �, assuming

Then the dimensionless parameters take the form

(Q0 is the Galileo number).
Dispersion equations (3.17)–(3.19) enable us to calculate the relation between the critical values of the parameters,

for example, Ma(�) and �(�), when the remaining parameters are fixed. It is well known that, when investigating
parametric interactions in mechanical systems, two cases are of particular interest, namely, high-frequency oscillations
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Fig. 1.

and parametric resonances, which will also be considered below. When � → ∞ it is assumed that the vibration amplitude
is O(�−1), in which case the amplitude of the vibration rate remains finite, which corresponds to the conditions of the
averaging method. The parameter q can be written in the form q = √

�s/2��, where �s = ã2h2/2�2.8 The results of
calculations were monitored by the arrival at a high-frequency asymptotic form8 and small wave numbers.c During
the course of the calculations the number of terms of the continued fraction was determined in such a way that, when
a new term was added, the value of the continued fraction changed by no more than 10−6.

4.1. The high-frequency asymptotic form

We have obtained, by calculation, the values of the frequency � for which the critical parameters Ma(�) and
�(�) = ic(�) reach asymptotic values8 when the remaining parameters are fixed. All the calculations were carried out
for a layer with a hard lower wall with Pr = 0.01, Q0 = 0, C = 104, �s = 104 and B = 0 or B = ∞. In the case of monotonic
instability (� = 0), we obtain that when � = 500 the values of the Marangoni numbers are identical with the asymptotic
values with an accuracy of up to 3%. The results for oscillatory short-wave instability are shown in Fig. 1, where the
dash-dot curve corresponds to no vibration, while the dashed curve corresponds to the average problem. It can be seen
that vibration can have both a destabilizing effect (� = 103), and a stabilizing effect (� = 104). When � = 105 the graph
of Ma(�) differs from the high-frequency asymptotic form by less than 0.5%.

4.2. Resonances

It is well known that when the parameters vary the Floquet exponent � may be equal to zero (synchronous per-
turbations), i�/2 (double-period perturbations), or equal to ±ic, c > 0 (quasi-periodic perturbations). Since, together
with each point � the points � + in�, n ∈Z also belong to the Floquet spectrum, all the equalities must be understood
as equalities with respect to the modulus i�. The regions of parametric resonance, corresponding to T-periodic and
2T-periodic modes (T = 2�/�), were obtained numerically using the transcendental real equations (3.18) and (3.19).
The calculations were carried out for �s = 104, Bi = 0 and B = 0. The behaviour of the resonance curves corresponding
to � = i�/2 is shown in Fig. 2 for various values of the frequency �. The dashed curve corresponds to oscillatory insta-
bility, while the continuous branch corresponds to monotonic instability, in the case of the high-frequency asymptotic
form. As a result of calculations we obtained that, for the values of the parameters indicated, the resonance neutral
curves, which bound the instability regions, are closed and do not disappear as the frequency increases, but are shifted
to the right and raised upwards.

The behaviour of the resonance curves Ma(�) and � = 0 is interesting (Fig. 3). When � = 1000 the neutral curve is
closed, when � = 1700 it consists of two closed branches, and when � = 1750 the neutral curve consists of three closed

c Zen’kovskaya S M. Long-wave oscillatory instability of thermocapillary flows in a horizontal layer. Rostov-on-Don, 2005. Deposited at VINITI
9 August 2005, No.1135-V, 2005.
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Fig. 2.

branches. A fragment of all the patterns with curves corresponding to � = 1700, 1750, 2000 and 3000 is shown on an
increased scale. As � increases (for example, when � = 2000) the branches in the region Ma < 0 disappear, and only
the closed curves remain, which, when � increases, are moved upwards and are shifted to the right. The overall pattern
of the behaviour of the resonance curves when � = 103, 5 × 103 and 3 × 104 is shown in Fig. 4. Two types of curves
correspond to each value of �, when � = i�/2 and � = 0. In all cases the instability regions are inside the loop formed
by the resonance curves.

Fig. 3.
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Fig. 4.

5. The long-wave asymptotic form of oscillatory instability

Oscillatory instability in Marangoni convection when there is an isothermal hard wall was first detected
numerically,25 where the critical values of Ma turned out to be negative. Further calculations in Refs. 6–8 and in
the present paper showed that, when there are vibrations in the region of small wave numbers �, the critical values of
Ma(�) are also negative, and the principal terms of the asymptotic form are independent of the vibration parameters.

In the preprint listed in the third footnote, in the case of hard and soft walls, for critical values of the parameters
c(�) and Ma(�) as � → 0, the asymptotic was constructed in the form

(5.1)

For c0 transcendental equations were written, while for the number Ma0 an explicit formula was given. It was shown
that the principal terms of expansions (5.1) depend only on the Prandtl number, the Biot number Bi and B. The case
Bi = 0 and B = 0 or B = ∞ was investigated in detail. Thus, for example, in the case of an isothermal soft wall (B = ∞)
and a non-heat conducting hard wall (B = 0) it was found that the transcendental equation for the unknown y = √

2c0
is the same and has the form

(5.2)

Hence the relation y(Pr−1) = √
Pry(Pr) follows, from which we obtain that when � → 0 the frequency of neutral

oscillations when Pr < 1 is greater than when Pr > 1. Moreover, it was proved that when Pr = n2, n > 1, n ∈Z, Eq.
(5.2) has only real roots xk = k�, k = ∈Z. Calculation showed that when � → 0 the values of Ma and c agree well
with the asymptotic values.
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